

Article

Subscriber access provided by American Chemical Society

Synthesis, Structure, and F NMR Spectra of 1,3,7,10,14,17,23,28,31,40-C(CF)

Ivan E. Kareev, Igor V. Kuvychko, Sergey F. Lebedkin, Susie M. Miller, Oren P. Anderson, Konrad Seppelt, Steven H. Strauss, and Olga V. Boltalina *J. Am. Chem. Soc.*, **2005**, 127 (23), 8362-8375• DOI: 10.1021/ja050305j • Publication Date (Web): 21 May 2005

Downloaded from http://pubs.acs.org on March 25, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 19 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article

Subscriber access provided by American Chemical Society

• Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Synthesis, Structure, and ¹⁹F NMR Spectra of 1,3,7,10,14,17,23,28,31,40-C₆₀(CF₃)₁₀

Ivan E. Kareev,^{†,¶} Igor V. Kuvychko,§ Sergey F. Lebedkin,[¶] Susie M. Miller,§ Oren P. Anderson,[§] Konrad Seppelt,[#] Steven H. Strauss,^{*,§} and Olga V. Boltalina^{*,§,‡}

Contribution from the Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432 Russia, Forschungszentrum Karlsruhe, Institute for Nanotechnology, Karlsruhe 76021 Germany, Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, Institut für Anorganische und Analytische Chemie der Freie Universität, Berlin D14195 Germany, and Chemistry Department, Moscow State University, Moscow 119992 Russia

Received January 17, 2005; E-mail: steven.strauss@colostate.edu (S.H.S.); ovbolt@lamar.colostate.edu (O.V.B.)

Abstract: A significant improvement in the selectivity of fullerene trifluoromethylation reactions was achieved. Reaction of trifluoroiodomethane with [60]fullerene at 460 °C and [70]fullerene at 470 °C in a flow reactor led to isolation of cold-zone-condensed mixtures of $C_{60}(CF_3)_n$ and $C_{70}(CF_3)_n$ compounds with narrow composition ranges: $6 \le n \le 12$ for $C_{60}(CF_3)_n$ and $8 \le n \le 14$ for $C_{70}(CF_3)_n$. The predominant products in the C₆₀ reaction, an estimated 40+ mol % of the cold-zone condensate, were three isomers of C₆₀(CF₃)₁₀. Two of these were purified by two-stage HPLC to 80+% isomeric purity. The third isomer was purified by three-stage HPLC to 95% isomeric purity. Thirteen milligrams of this orange-brown compound was isolated (5% overall yield based on C₆₀), and its C₁-symmetric structure was determined to be 1,3,7,10,14,17,23,28,31,40-C₆₀(CF₃)₁₀ by X-ray crystallography. The CF₃ groups are either meta or para to one another on a *p-m-p-p-p-m-p-m-p* ribbon of edge-sharing C₆(CF₃)₂ hexagons (each pair of adjacent hexagons shares a common CF_3 group). The selectivity of the C_{70} reaction was even higher. The predominant product was a single $C_{70}(CF_3)_{10}$ isomer representing >40 mol % of the cold-zone condensate. Single-stage HPLC led to the isolation of 12 mg of this brown compound in 95% isomeric purity (27% overall yield based on converted C70). The new compounds were characterized by EI or S8-MALDI mass spectrometry and 2D-COSY ¹⁹F NMR spectroscopy. The NMR data demonstrate that through-space coupling via direct overlap of fluorine orbitals is the predominant contribution to J_{FF} values in these and most other fullerene(CF_3)_n compounds.

Introduction

An important but synthetically challenging class of fullerene derivatives are those in which n independent substituents form σ bonds to *n* cage carbon atoms. Compounds such as C₆₀X_n (X = H, F, Cl, Br, R, Ar, and/or R_F) are rarely prepared with high yield and with high compositional and isomeric purity. This is especially true for syntheses that involve radical additions, which are, in general, difficult to control.^{1,2} The situation is even more complicated with analogous σ derivatives of lower-symmetry higher fullerenes. In addition to any useful and/or interesting chemical or physical properties the products might have, their importance includes what the product distributions in reaction mixtures reveal about fullerene reactivity patterns, even if it

has not yet been ascertained whether the reaction is under thermodynamic or kinetic control.

Accordingly, reaction conditions and purification schemes leading to the isolation of three or fewer isomers of a given (fullerene) X_n composition are rare, and syntheses that lead to unambiguous characterization by single-crystal X-ray diffraction are fewer still. As far as C60 derivatives are concerned, examples include Cs-C60Br6, 3,4 C2v-C60Br8, 3,4 Th-C60Br24, 4,5 C3v-C60F18, 6,7 $T-C_{60}F_{36}$, $^{8}C_{1}-C_{60}F_{36}$, $^{9}D_{3}$ - and $S_{6}-C_{60}F_{48}$ (disordered solid solution in single crystals),¹⁰ C₆₀F₁₈O (disordered),¹¹ C₅-TlC₆₀-

- (3) Birkett, P. R.; Hitchcock, P. B.; Kroto, H. W.; Taylor, R.; Walton, D. R. M. Nature 1992, 357, 479–481.
- (4)Troyanov, S. I.; Popov, A. A.; Denisenko, N. I.; Boltalina, O. V.; Sidorov, L. N.; Kemnitz, E. Fullerenes, Nanotubes, Carbon Nanostruct. 2003, 11, 61-77.
- (5)Tebbe, F. N.; Harlow, R. L.; Chase, D. B.; Thorn, D. L.; Campbell, G. C. Calabrese, J. C.; Herron, N.; Young, R. J.; Wasserman, E. Science 1992, 256, 822-825
- (6) Neretin, I. S.; Lyssenko, K. A.; Antipin, M. Y.; Slovokhotov, Y. L.; Boltalina, O. V.; Troshin, P. A.; Lukonin, A. Y.; Sidorov, L. N.; Taylor, R. Angew. Chem., Int. Ed. 2000, 39, 3273–3276.
- Troyanov, S. I.; Boltalina, O. V.; Kuvychko, I. V.; Troshin, P. A.; Kemnitz, E.; Hitchcock, P. B.; Taylor, R. Fullerenes, Nanotubes, Carbon Nanostruct. 2002, 10, 243-260.
- (8) Hitchcock, P. B.; Taylor, R. *Chem. Commun.* 2002, 2078–2079.
 (9) Avent, A. G.; Clare, B. W.; Hitchcock, P. B.; Kepert, D. L.; Taylor, R. *Chem. Commun.* 2002, 2370–2371.

[†] Institute of Problems of Chemical Physics.

[¶] Institute for Nanotechnology.

[§] Colorado State University.

[#] Freie Universität Berlin.

[‡] Moscow State University.

^{(1) (}a) Beckwith, A. L. J. Chem. Soc. Rev. 1993, 22, 143-151. (b) Colombani, D. Prog. Polym. Sci. **1999**, 24, 425–480. (c) Renaud, P.; Gerster, M. Angew. Chem., Int. Ed. **1998**, 37, 2562–2579.

Hirsch, A.; Brettreich, M. Fullerenes-Chemistry and Reactions; Wiley-VCH: Weinheim, Germany, 2005. (2)

Ph₅,¹² C_s-C₆₀(9-fluorenyl)₄,¹³ 1,6,9,18- and 1,6,11,18-C₆₀(CH₂-Ph)4,¹⁴ C_{3v}-C₆₀F₁₅(CBr(CO₂Et)₂)3,¹⁵ and C₁- and C_s-C₆₀F₁₇CF₃ (disordered solid solution in single crystals).¹⁶ We have excluded from this discussion the elegant and extensive work on cycloadditions to fullerenes, which generate two (or four) C_{cage} -X σ bonds, not just one, for each independent X group added.2

Progress has been particularly slow, for example, for chlorofullerenes, which are not amenable to routine NMR characterization and which fragment extensively under most mass spectrometric conditions.¹⁷ However, even in the case of fluorofullerenes and trifluoromethylfullerenes, for which ¹⁹F NMR spectroscopy has proven to be invaluable for structure elucidation,^{18,19} ambiguities can arise. The structurally characterized compound C₆₀F₁₇CF₃ was originally misidentified as C₆₀F₁₈-CF₂ based on its ¹⁹F NMR spectrum.²⁰ A more recent example involves the structures of purified C_1 isomers of $C_{60}(CF_3)_4$ and C₆₀(CF₃)₆, which were prepared using high-temperature reactions of C60 and AgCF3CO2.21-24 On the basis of 2D 19F NMR data and DFT calculations, we proposed the structures in Figure 1 having the CF₃ groups on ribbons of edge-sharing meta-C₆- $(CF_3)_2$ or para-C₆(CF₃)₂ hexagons.^{21,22} On the basis of an analysis of ¹⁹F coupling constants, Taylor and co-workers proposed the structures in Figure 1 having CF₃ groups on contiguous cage carbon atoms (i.e., a series of 1,2 additions, with more than two CF₃ groups on some hexagons and pentagons).^{23,24} They have also proposed that the majority of $C_{70}(CF_3)_n$ derivatives they have isolated contain CF_3 groups on contiguous cage carbon atoms.^{23,25}

We now report the high-temperature trifluoromethylation of C₆₀ and C₇₀ with gaseous CF₃I. Among the products isolated and characterized by 19 F NMR spectroscopy is a C_1 -symmetric isomer of $C_{60}(CF_3)_{10}$ that has been unambiguously characterized

- (10) Troyanov, S. I.; Troshin, P. A.; Boltalina, O. V.; Ioffe, I. N.; Sidorov, L. N.; Kemnitz, E. Angew. Chem., Int. Ed. 2001, 40, 2285-2287.
- Boltalina, O. V.; Troshin, P. A.; de La Vaisser, B.; Fowler, P. W.; Sandall,
 J. P. B.; Hitchcock, P. B.; Taylor, R. *Chem. Commun.* 2000, 1325–1326. (12) Sawamura, M.; Iikura, H.; Nakamura, E. J. Am. Chem. Soc. 1996, 118,
- 12850-12851 (13) Murata, Y.; Shiro, M.; Komatsu, K. J. Am. Chem. Soc. 1997, 119, 8117-
- 8118. (14) Kadish, K.; Gao, X.; Van Caemelbecke, E.; Suenobu, T.; Fukuzumi, S. J.
- Am. Chem. Soc. 2000, 122, 563-570. (15) Wei, X.-W.; Darwish, A. D.; Boltalina, O. V.; Hitchcock, P. B.; Street, J.
- M.; Taylor, R. Angew. Chem., Int. Ed. 2001, 40, 2989–2992.
 (16) Boltalina, O. V.; Hitchcock, P. B.; Troshin, P. A.; Street, J. M.; Taylor, R. J. Chem. Soc., Perkin Trans. 2 2000, 2410–2414.
 (17) Streateding of Market and Marke
- Steletskiy, A. V.; Kouvitchko, I. V.; Esipov, S. E.; Boltalina, O. V. Rapid Commun. Mass Spectrosc. 2001, 16, 99–102.
 Boltalina, O. V.; Strauss, S. H. In Dekker Encyclopedia of Nanoscience
- and Nanotechnology; Schwarz, J. A., Contescu, C., Putyera, K., Eds.;
- Marcel Dekker: New York, 2004; pp 1175–1190.
 (19) (a) Denisenko, N. I.; Troyanov, S. I.; Popov, A. A.; Kuvychko, I. V.; Zemva, B.; Kemnitz, E.; Strauss, S. H.; Boltalina, O. V. J. Am. Chem. Soc. 2004, 126, 1618–1619. (b) Goryunkov, A. A.; Markov, V. Y.; Ioffe, I. N.; Sidorov, L. N.; Bolskar, R. D.; Diener, M. D.; Kuvychko, I. V.; Strauss, S. H. D.; Kuvychko, I. V.; Strauss, S. H. D.; Kuvychko, I. V.; Strauss, S. H.; Boltalina, C. K. J. Context, Strauss, S. H.; Boltalina, C. K.; Strauss, S. H.; Strauss, Straus S. H.; Boltalina, O. V. Angew. Chem., Int. Ed. **2004**, 43, 997–1000. (c) Boltalina, O. V.; Markov, V. Y.; Troshin, P. A.; Darwish, A. D.; Street, J. M.; Taylor, R. Angew. Chem., Int. Ed. 2001, 40, 787-789
- (20) Avent, A. G.; Boltalina, O. V.; Lukonin, A. Y.; Street, J. M.; Taylor, R. J. Chem. Soc., Perkin Trans. 2 2000, 1–3.
- Goryunkov, A. A.; Kuvychko, I. V.; Ioffe, I. N.; Dick, D. L.; Sidorov, L. (21)N.; Strauss, S. H.; Boltalina, O. V. J. Fluorine Chem. 2003, 124, 61–64.
 (22) Goryunkov, A. A.; Ioffe, I. N.; Kuvychko, I. V.; Yankova, T. S.; Markov,
- V. Y.; Streletskii, A. V.; Dick, D. L.; Sidorov, L. N.; Boltalina, O. V.; Strauss, S. H. Fullerenes, Nanotubes, Carbon Nanostruct. 2004, 12, 181-185
- (23) Darwish, A. D.; Avent, A. G.; Abdul-Sada, A. K.; Taylor, R. Chem. Commun. 2003, 1374-1375.
- (24) Darwish, A. D.; Abdul-Sada, A. K.; Avent, A. G.; Lyakhovetsky, V. I.; Shilova, E. A.; Taylor, R. *Org. Biomol. Chem.* **2003**, *1*, 3102–3110. (25) Darwish, A. D.; Abdul-Sada, A. K.; Avent, A. G.; Martsinovich, N.; Street,
- J. M.; Taylor, R. J. Fluorine Chem. 2004, 125, 1383-1391.

Figure 1. Schlegel diagrams for the structures of C_1 - $C_{60}(CF_3)_4$ and C_1 -C₆₀(CF₃)₆ proposed in refs 21-25. The black circles represent fullerene carbon atoms to which the CF3 groups are attached.

by X-ray crystallography. The structure, shown in Figure 2, and an analysis of its 1D- and 2D-COSY ¹⁹F NMR spectra strongly suggest that, in general, $C_{60,70}(CF_3)_n$ derivatives prepared at high temperature have CF3 groups arranged in meta or para positions on a ribbon of edge-sharing hexagons. Furthermore, with a precise structure in hand, an analysis of the $J_{\rm FF}$ NMR coupling constants supports the earlier conclusion^{21,22} that through-space ¹⁹F⁻¹⁹F coupling is significant in trifluoromethylfullerenes and possibly in fluorofullerenes as well.

Experimental Section

The compounds C60 (99.9+% Super Gold Grade, Hoechst) and CF3I (99%, Sigma-Aldrich) were used as received, and C₇₀ was purified to 99+ mol % by HPLC from fullerenes extracted with toluene from soot prepared by the arc-discharge method.²⁶ Hexane and toluene were HPLC grade. Benzene- d_6 (Cambridge) and hexafluorobenzene (Sigma-Aldrich) were dried over an appropriate drying agent and vacuum distilled.

Preparation and Isolation of Isomers C₆₀(CF₃)₁₀-1, C₆₀(CF₃)₁₀-2, and C₆₀(CF₃)₁₀-3. Finely ground C₆₀ (150 mg, 0.208 mmol) was placed in a 0.8 cm i.d. glass tube connected to a gas handling system at one end and a mineral oil bubbler at the other. The portion of the tube containing C₆₀ was placed in a 5 cm long tube furnace. After purging the sample with argon, it was heated to 460 °C and treated with 12 sccm of gaseous CF₃I (ca. 0.05 mmol min⁻¹) for 2 h (CAUTION: CF₃I decomposes in air above 300 °C and produces toxic HF, COF₂, and I₂; handle only in a well-ventilated fume hood). Orange-brown $C_{60}(CF_3)_n$ compounds and purple I₂ condensed inside the tube approximately 1 cm outside of both ends of the furnace (i.e., in the cold zones). A 40 mg portion of C₆₀ was recovered unchanged from the hot zone. Iodine was removed under a flow of argon with mild heating (≤ 100 °C), and the orange-brown condensate (116 mg) was purified by HPLC (20 mm i.d. \times 250 mm Cosmosil Buckyprep column, Nacalai Tesque, Inc.;

⁽²⁶⁾ Krätschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Nature **1990**, *347*, 354–358.

Figure 2. Structure of one enantiomorph of 1,3,7,10,17,23,28,31,40-C₆₀-(CF₃)₁₀ (50% anisotropic probability ellipsoids for all atoms; no disorder). The estimated standard deviations for all C-F distances and for nearly all C-C distances are ± 0.003 Å. The ribbon of edge-sharing C₆(CF₃)₂ hexagons is highlighted in gray in the Schlegel diagram.

300 nm UV detector; 18 mL min⁻¹ eluent flow rate) as follows. In the first stage, 1.8 mL injections were eluted with toluene to give eight fractions. In the second stage, 1.8 mL injections of each fraction were eluted with 20/80 (v/v) toluene/hexane. One fraction contained primarily two isomers of C₆₀(CF₃)₁₀, which were separated as narrow cuts and isolated by solvent evaporation (80+ mol % purity; 10(1) mg each; 3-4% overall yield each based on converted C₆₀). Another fraction contained primarily a third isomer of $C_{60}(CF_3)_{10}$. A third HPLC purification stage of this fraction using 20/80 toluene/hexane consisted of collecting a cut from 15.2 to 16.8 min. This contained 13(1) mg of 95+ mol % pure C₆₀(CF₃)₁₀-3 (ca. 5% overall yield based on converted C₆₀).

Preparation and Isolation of C₇₀(CF₃)₁₀-1. This compound was prepared using the same procedure as above except that C₇₀ was used (40 mg, 0.046 mmol), the temperature was 470 °C, and the reaction time was 1 h. A 16 mg portion of C₇₀ was recovered unchanged from the hot zone. The brown cold-zone condensate (35 mg) was purified by a one-stage HPLC procedure (same column and parameters as above) using 20/80 toluene/hexane as the eluent. A cut from 16.7 to 18.5 min

Table 1. Crystal Data and Structure Refinement for C₆₀(CF₃)₁₀-3

formula, formula weight crystal system, space group, Z color of crystal unit cell dimensions	$C_{70}F_{30}, 1410.70$ triclinic, $P\bar{1}, 2$ orange-brown a = 12.1433(7) Å b = 12.3153(7) Å c = 15.6682(9) Å $\alpha = 82.2470(10)^{\circ}$ $\beta = 86.6060(10)^{\circ}$ $\gamma = 81.9760(10)^{\circ}$
temperature final <i>R</i> indices $[I > 2\sigma(I)]$ goodness-of-fit on F^2	$r_{173(2)} K$ $R_1 = 0.0529, wR_2 = 0.1292$ 1.037

resulted in the isolation of 12(1) mg of 95+ mol % pure, brown, microcrystalline C70(CF3)10-1 (27% overall yield based on converted C_{70})

Spectroscopic Characterization. Matrix-assisted laser desorptionionization time-of-flight mass spectra were recorded using a Voyager-DE PRO Workstation (Applied Biosystems). Sulfur was used as the matrix material. It was mixed with the sample in toluene or toluene/ hexane immediately prior to deposition on the target. Nitrogen laser pulses of 337 nm wavelength, 0.5 ns duration, and 3 Hz frequency were used to desorb the species into the gas phase. The negative or positive ions formed were detected in reflectron mode. Electronionization (EI) mass spectra were recorded with a Fisons VG Quattro single quadrupole mass spectrometer. Samples were loaded into glass capillaries which were heated to 400 °C. The desorbed molecules were ionized with 20 eV electrons. Samples for 19F NMR spectroscopy were benzene- d_6 solutions at room temperature and were recorded using a Bruker INOVA-400 spectrometer operating at 376.5 MHz (C₆F₆ internal standard, δ -169.9).

Structure of 1,3,7,10,14,17,23,28,31,40-C₆₀(CF₃)₁₀ (C₆₀(CF₃)₁₀-3). X-ray diffraction data from a single crystal grown by evaporation from a saturated benzene solution were recorded using a Bruker SMART CCD diffractometer employing Mo Ka radiation (graphite monochromator). Selected details related to the crystallographic experiments are listed in Table 1. Unit cell parameters were obtained from a leastsquares fit to the angular coordinates of all reflections. Intensities were integrated from a series of frames (ω rotation) covering more than a hemisphere of reciprocal space. An empirical absorption correction was applied by using SADABS.27

The structure was solved by using direct methods and was refined (on F^2 , using all data) by a full-matrix, weighted least-squares process. All carbon and fluorine atoms were refined by using anisotropic atomic displacement parameters. Standard Bruker instrument control, data reduction, and integration (SAINT) software were employed, and Bruker SHELXTL²⁸ software was used for structure solution, refinement, and graphics.

Results and Discussion

Synthesis of C_{60,70}(CF₃)_n. (a) Background and Strategy. Radical additions to fullerenes are difficult to control, especially when four or more independent X substituents²⁹ are added. Mixtures of fullerene(X)_n compositions with a range of n values are typically formed (*n* is an even integer except as noted).² For example, the first fluorinations of C_{60} and C_{70} with F_2 produced mixtures such as C₆₀F₃₄₋₄₄³⁰ and C₇₀F₄₆₋₅₄.³¹ Selectiv-

⁽²⁷⁾ Sheldrick, G. M. SADABS-A program for area detector absorption corrections (28) Sheldrick, G. M. SHELXTL, version 6.12; Bruker AXS: Madison, WI,

^{1999.} (29) Powell, W. H.; Cozzi, F.; Moss, G. P.; Thilgen, C.; Hwu, R. J. R.; Yerin,

A. Pure Appl. Chem. 2002, 74, 629-695.
 (30) Selig, H.; Lifshitz, C.; Peres, T.; Fischer, J. E.; McGhie, A. R.; Romanov, W. J.; McCauley, J. P.; Smith, A. B. J. Am. Chem. Soc. 1991, 113, 5475-

^{5476.}

ity was only achieved after screening many fluorinating agents, stoichiometries, and reaction temperatures.^{18,32} Similarly, optimization of bromination and chlorination reaction conditions led to the isolation of purified, selectively halogenated derivatives such as C₆₀Cl₆, C₆₀Br₆, C₆₀Br₈, C₆₀Br₂₄, and C₇₀Br₁₀.^{3,5,33,34}

There have been two reports in the literature describing the fluorination of fullerenes,^{16,35} one describing an attempt to fluorinate fullerenes,³⁶ and one describing the fluorination of an azafullerene³⁷ that resulted in the unintentional preparation of trace amounts of fullerene derivatives containing one or more CF_3 groups. The intentional addition of *n* independent perfluoroalkyl groups to fullerenes to give isolable products has been studied since 1993 (cycloadditions of C₂F₄ to fullerenes³⁸ are excluded from this discussion). Fagan and co-workers at DuPont reported that the photolysis or thermolysis of C₆₀ and R_FI in organic solvents led to mixtures of products with compositions such as $C_{60}(C_6F_{13})_nH_m$ when R_FI was $C_6F_{13}I$ and the solvent was 1,2,4-C₆H₃Cl₃ (n + m even, n = 6-12) and C₆₀(CF₃)_n when $R_{\rm F}I$ was $CF_{3}I$ and the solvent was hexafluorobenzene (n =4-14).39 In 2002, Shinohara and co-workers reported the production of La@C₈₂(C₈F₁₇)₂ by photolysis of a toluene solution of 0.85 mg of La@C82 and 1.8 equiv of C8F17I followed by a multi-stage HPLC purification,⁴⁰ and we just reported the synthesis of two C1 isomers of Y@C82(CF3)5 using the AgCF3-CO₂ method described below.⁴¹ Some or all of these reactions may involve the stepwise addition of perfluoroalkyl radicals to the fullerene.

In 2001, we reported⁴² (and subsequently patented⁴³) the solidstate trifluoromethylation of C_{60} and a C_{60}/C_{70} mixture with the metal trifluoroacetates AgCF₃CO₂ ($T_{rxn} = 300$ °C) and $(Cr,Cu,Pd)(CF_3CO_2)_2$ ($T_{rxn} = 350-400$ °C). In the case of AgCF₃CO₂, the range of *n* values was 2-22 for C₆₀(CF₃)_{*n*} and 6-22 for $C_{70}(CF_3)_n$. In 2003, we found that a two-stage sublimation of the AgCF₃CO₂ reaction products, first at 380 °C to remove the more volatile components with $n \ge 12$

- (31) Tuinman, A.; Mukherjee, P.; Adcock, J. L.; Hettich, R. L.; Compton, R. N. J. Phys. Chem. 1992, 96, 7584-7589.
- (32) Boltalina, O. V.; Goryunkov, A. A.; Markov, V. Y.; Ioffe, I. N.; Sidorov, L. N. Int. J. Mass Spectrom. 2003, 228, 807-824.
- (a) Birkett, P. R.; Avent, A. G.; Darwish, A. D.; Kroto, H. W.; Taylor, R.;
 Walton, D. R. M. J. Chem. Soc., Chem. Commun. 1993, 1260–1262. (b)
 Troshin, P. A.; Kolesnikov, D.; Burtsev, A. V.; Lubovskaya, R. N.; (33)Boltalina, O. V.; Troyanov, S. I. Fullerenes, Nanotubes, Carbon Nanostruct. 2003, 11, 47-60. (c) Kuvychko, I. V.; Streletskii, A. V.; Popov, A. A.; Kotsiris, S. G.; Drewello, T.; Strauss, S. H.; Boltalina, O. V. Manuscript in preparation
- (34) Denisenko, N. I.; Popov, A. A.; Kouvitchko, I. V.; Boltalina, O. V.; Chelovskaya, N. V. Proc. Electrochem. Soc. 2002, 12, 577–586.
- (35) (a) Avent, A. G.; Boltalina, O. V.; Goryunkov, A. V.; Darwish, A. D.; Markov, V. Y.; Taylor, R. Fullerenes, Nanotubes, Carbon Nanostruct. 2002, 10, 235-241. (b) Boltalina, O. V.; Darwish, A. D.; Street, J. M.; Taylor,
- (a) 10, 221. (b) Johanna, O. V., Dawish, A. D., Sheet, S. M., Faylor, R.; Wei, X.-W. Perkin Trans. 2 202, 251–256.
 (36) Fritz, H. P.; Hiemeyer, R. Carbon 1995, 33, 1601–1609.
 (37) Abdul-Sada, A. K.; Darwish, A. D.; Taylor, R.; Boltalina, O. V.; Markov, V. Y.; Hirsch, A.; Reuther, U.; Street, J. M. Proc. Electrochem. Soc. 2002, 12, 242 - 254
- (38) Bekiarian, P. G.; Fagan, P. J.; Krusic, P. J. Cyclofluoroalkylated Fullerene Compounds. U.S. Patent 5,382,718, January 17, 1995.
 (39) (a) Fagan, P. J.; Krusic, P. J.; McEwen, C. N.; Lazar, J.; Parker, D. H.; Herron, N.; Wasserman, E. Science 1993, 262, 404–407. (b) Fagan, P. J.;
- Krusic, P. J.; Wasserman, E. Fluoroalkylated Fullerene Compounds. U.S. Patent 5,354,926, October 11, 1994
- (40) Tagmatarchis, N.; Taninaka, A.; Shinohara, H. Chem. Phys. Lett. 2002, 355, 226–232.
- (41) Kareev, I. E.; Lebedkin, S. F.; Bubnov, V. P.; Yagubskii, E. B.; Ioffe, I. N.; Khavrel, P. A.; Kuvychko, I. V.; Strauss, S. H.; Boltalina, O. V. Angew. Chem., Int. Ed. 2005, 44, 1846-1849.
- Uzkikh, I. S.; Dorozhkin, E. I.; Boltalina, O. V.; Boltalin, A. I. Dokl. Akad. (42)Nauk. 2001, 379, 344-347.
- (43) Boltalina, O. V.; Boltalin, A. I.; Uzkikh, I. S.; Dorozhkin, E. I. Trifluoromethylation Process For Preparing Trifluoromethyl Derivatives of Fullerenes. Russian Patent 2001–105817–2182897, February 3, 2001.

followed by sublimation of the residue at 500 °C, resulted in a sublimate with a narrow range of $C_{60}(CF_3)_n$ compounds with n = 2-10 (primarily 2-6).²¹ The high T sublimation greatly simplified subsequent HPLC purification.²¹ Taylor and coworkers separated into fractions, by extensive HPLC processing,23-25 many of the products they prepared using our 2001 synthetic method.42 Some fractions contained single isomers of single compositions.^{23–25}

We are pursuing three strategies to improve the selectivity of C₆₀ trifluoromethylation reactions. The first is to exhaustively trifluoromethylate C₆₀ with a large excess of trifluoromethylating reagent, possibly producing a composition such as $C_{60}(CF_3)_{24}$ that might resist further addition of CF₃ groups. The second strategy (similar to the one employed by Shinohara⁴⁰) is to limit the stoichiometric ratio of trifluoromethylating reagent to C_{60} . The third strategy, an example of which is the subject of this paper (and which was also applied to C₇₀ trifluoromethylation), is to continuously remove a narrow range of compositions from the reaction zone as they are formed. In principle, this can be accomplished by selective extraction into an immiscible phase, selective precipitation from a solution, selective crystallization from a melt, or selective distillation or sublimation of a limited number of products at a given temperature. Selective sublimation seemed to be the natural choice for C₆₀ trifluoromethylations because our previous work showed that (i) $C_{60}(CF_3)_n$ derivatives can be sublimed without decomposition at temperatures as high as 500 °C, (ii) derivatives with higher n values sublime at temperatures lower than that of derivatives with lower *n* values, and (iii) derivatives with n = 2 - 10 sublime under vacuum only at temperatures well above 380 °C.21 This suggested that solidstate trifluoromethylation reactions of C₆₀ at temperatures between 400 and 500 °C might be suitable, but that would exclude most trifluoroacetate salts since they decompose at lower temperatures (e.g., AgCF3CO2 decomposes at 230 °C and $Cr(CF_3CO_2)_2$ at 310 °C⁴²). Ideally, a gaseous reagent that generates trifluoromethyl radicals at a constant rate when heated would flow through a tube containing solid C₆₀ heated to 400-500 °C. Products with low n values would sublime out of the hot zone before they could react further, in a way that is analogous to the Knudsen cell-derived selective syntheses of $C_{60}F_{18}$ and $C_{60}F_{36}$.^{18,32} This variation of the third strategy did in fact result in the production of a ca. 40% yield (based on converted C_{60}) of a mixture of isomers of a single composition, $C_{60}(CF_3)_{10}$, and a ca. 27% yield of a *single* isomer of $C_{70}(CF_3)_{10}$ (based on converted C₇₀).

(b) Reactions of C₆₀ with CF₃I Vapor at 200-480 °C. (i) Experiments in Berlin. Samples of C₆₀ (35-50 mg, 0.049-0.069 mmol) in a nickel boat within a glass tube were heated under an argon atmosphere to either 200, 460, or 480 °C in a temperature-programmable tube furnace. Once the set temperature was reached, CF₃I vapor at 1 atm was allowed to flow through the reaction tube for about 2 h (the flow rate was not precisely controlled but was approximately 5 sccm (ca. 0.02 mmol min⁻¹)). In the 460 and 480 °C experiments, purple I_2 and orange-brown $C_{60}(CF_3)_n$ condensed in the glass tube outside of the hot zone (i.e., outside of the furnace) as soon as CF₃I had filled the tube. Iodine condensed further from the hot zone than did the fullerene products. Both I_2 and $C_{60}(CF_3)_n$ condensed at the outlet and inlet sides of the hot zone (more

Figure 3. Electron-impact-ionization (20 eV) mass spectra of the products of the Berlin $C_{60} + CF_3I$ experiments. Lower *n* values are favored at higher temperatures because the products sublime out of the hot zone as they are formed.

appeared to condense on the outlet side), probably because the flow rate was low.

In the lowest temperature experiment, no I₂ or fullerene derivative sublimate was observed in the cold zone at 200 °C. With CF₃I continuing to flow through the reactor, the temperature was increased to 420 °C during 2.5 h (ca. 1.5 °C min⁻¹). At 300 °C, I₂ formation was apparent, indicating thermal degradation of CF₃I (this is consistent with the thermolysis of CF₃I in air⁴⁴), but no orange—brown fullerene product was observed in the cold zones until the temperature had reached 400 °C. Since C₆₀(CF₃)_n compounds with low *n* values do not sublime readily below 400 °C, it is not known at this time if such products had formed before the temperature had reached 400 °C. The temperature was held at 420 °C for 2 h and then at 440 °C for 30 min.

In each experiment, the orange—brown mixture of $C_{60}(CF_3)_n$ compounds that had condensed in the cold zone was collected in air, and I₂ was removed under a flow of argon at temperatures ≤ 100 °C. Electron-impact-ionization mass spectra (20 eV) of the crude mixtures of condensed products are shown in Figure 3. The molecular ions $C_{60}(CF_3)_n^+$ (n = 8, 10, 12, 14, 16) are the dominant species, with smaller amounts of some closed-shell fragment ions $C_{60}(CF_3)_{n-1}^+$. (In the 460 °C product mixture, small amounts of some $C_{60}(CF_3)_nO^+$ and $C_{60}(CF_3)_{n-1}O^+$ ions from oxide contaminants are visible, as well.)

Figure 4. HPLC chromatograms of the crude cold-zone-condensed C_{60} / CF₃I reaction products from the Karlsruhe experiments. Peak assignments are based on mass spectrometric analysis of selected fractions.

The results clearly show that lower *n* values are favored at higher reaction temperatures, demonstrating the efficacy of the strategy discussed above. For example, an observable amount of $C_{60}(CF_3)_8$ was formed at 480 °C but not at lower temperatures, and no observable amount of $C_{60}(CF_3)_{16}$ was formed at 480 °C. Most striking is that $C_{60}(CF_3)_{10}$ went from being a minor component of the reaction mixture at temperatures ≤ 460 °C to being the predominant product at 480 °C under these conditions.

(ii) Experiments in Karlsruhe. Experiments at 460 and 480 °C were repeated in Karlsruhe, but some of the reaction conditions were different. Larger amounts of C_{60} were used (>100 mg). The C_{60} was finely ground immediately prior to the reaction, and it was placed directly in the glass tube, not in a nickel boat, in the hot zone. Furthermore, the flow rate of CF₃I was greater, ca. 12 sccm (0.5 mmol min⁻¹). Additionally, the distance between the center of the hot zone (where the C_{60} samples were located) to the cold zone where fullerene products began to condense was much shorter (4.5 cm) than in the Berlin experiments (26 cm) because a much smaller furnace was used in Karlsruhe. For these reasons, the relative amounts of C_{60} -(CF₃)_n products were not the same as in the Berlin experiments.

Nevertheless, the same 20 °C change in reaction temperature produced the same trend in the distribution of products, as evidenced by the HPLC traces of the crude mixtures of coldzone-condensed products shown in Figure 4. In the 480 °C sample, there is clearly more $C_{60}(CF_3)_6$, more $C_{60}(CF_3)_8$, and less $C_{60}(CF_3)_{12}$ relative to $C_{60}(CF_3)_{10}$ than at 460 °C. In ongoing work, we are attempting to optimize the parameters of temperature, CF_3I flow rate, presence or absence of a buffer gas, C_{60} particle size, and diameter and length of the hot zone to further improve the selectivity.

The stoichiometric trifluoromethylation of C_{60} by CF_3I at high temperature can be represented by reaction 1.

$$C_{60}(s) + n \operatorname{CF}_{3}I(g) \xrightarrow{\Delta} C_{60}(\operatorname{CF}_{3})_{n}(g) + n/2 \operatorname{I}_{2}(g)$$
(1)

We know very little about what mechanism or mechanisms might be operable under our reaction conditions at the present

⁽⁴⁴⁾ Yamamoto, T.; Yasuhara, A.; Shiraishi, F.; Kaya, K.; Abe, T. Chemosphere 1997, 35, 643–654.

time. It is known that CF₃I undergoes simple thermolysis to I atoms and CF3 radicals.45 The rate of reaction 2 at 460 °C and 1 atm can be estimated from literature data to be high enough to cause scission of the C-I bond in each CF₃I molecule more than once during its residence time in the hot zone.⁴⁵

$$CF_3I(g) \rightarrow CF_3(g) + I(g)$$
 (2)

Therefore, it is certainly possible that CF_3 radicals add to C_{60} one by one. It is also known that CF₃I dissociates to M-CF₃ and M-I groups on many metal surfaces,^{46,47} and in some cases, including nickel,46 CF₃ radicals can desorb from the metal surface at temperatures as low as 43 °C. However, many other pathways are possible. For example, CF₃I adds across the C= C bonds of olefins at temperatures ≥ 200 °C.⁴⁸ In addition, although the 7.51 eV ionization energy of the gas-phase C₆₀ molecule⁴⁹ is much larger than the 1.89 eV electron affinity of the CF₃ radical,⁵⁰ the work function of solid C₆₀ is only 4.7 eV,⁵¹ very similar to the 4.6 eV work function of highly oriented pyrolytic graphite (HOPG),⁵² and CF₃⁻ carbanions are known to form when CF_3^+ cations (and presumably CF_3 radicals) are scattered from the surface of HOPG.53 Therefore, it is premature to rule out any mechanism involving concerted additions of CF₃I to form $C_{60}(CF_3)_n I_n$ intermediates, nucleophilic addition of ions formed by scattering from surfaces (including the surface of a particle of C₆₀), electron-transfer reactions, or a myriad of other possible elementary steps.

(c) Synthesis of $C_{60}(CF_3)_{10}$ Isomers 1–3. The orangebrown condensate from the 460 °C Karlsruhe reaction was separated into fractions by HPLC, first using toluene and then using 20/80 v/v toluene/hexane, as shown in Figure 5. Mass spectra of each fraction (not shown) led to the HPLC peak assignments in Figures 4 and 5. Toluene fraction 2 contained primarily two isomers of $C_{60}(CF_3)_{10}$. These isomers, C_{60} - $(CF_3)_{10}$ -1 and $C_{60}(CF_3)_{10}$ -2, coeluted in toluene but were separated and collected as separate fractions in toluene/hexane for NMR analysis.

Toluene fraction 3 contained a mixture of a third isomer of C₆₀(CF₃)₁₀, C₆₀(CF₃)₁₀-3, and a smaller, but comparable, amount of $C_{60}(CF_3)_{10}O$. These too were separated in 20/80 (v/v) toluene/ hexane by HPLC (not shown). The toluene/hexane fraction containing C₆₀(CF₃)₁₀-3 was chromatographed a third time, again in toluene/hexane, to give the bottom HPLC trace in Figure 5. From this sample, a cut of the $C_{60}(CF_3)_{10}$ -3 peak from 15.2 to 16.8 min was collected. Evaporation of solvent left 13(1) mg of solvent-free, microcrystalline, highly pure $C_{60}(CF_3)_{10}$ -3, which was used to obtain the S₈-MALDI mass spectrum shown in

- (45) (a) Kumaran, S.; Su, M. C.; Lim, K. P.; Michael, J. V. Chem. Phys. Lett. 1995, 243, 59-63. (b) Michael, J. V.; Kumaran, S. Comb. Sci. Technol. **1998**, *134*, 31–44.
- (46) Myli, K. B.; Grassian, V. H. J. Phys. Chem. 1995, 99, 1498-1504.
- (47) (a) Junker, K. H.; Sun, Z. J.; Scoggins, T. B.; White, J. M. J. Chem. Phys. 1996, 104, 3788-3796. (b) Wu, H.-J.; Hsu, H.-K.; Chiang, C. M. J. Am. Chem. Soc. 1999, 121, 4433-4442 and references therein.
 (48) (a) Haszeldine, R. N. J. Chem. Soc. 1949, 2856-2861. (b) Brace, N. O. J.
- Fluorine Chem. 1999, 93, 1-25. (c) Dolbier, J. W. R. Chem. Rev. 1996, 96, 1557-1584
- (49) Yoo, R. K.; Ruscic, B.; Berkowitz, J. J. Chem. Phys. 1992, 96, 911-918.
- (50) http://webbook.nist.gov.
 (51) (a) Gensterblum, G.; Pireaux, J.-J.; Thiry, P. A.; Caudano, R.; Buslaps, T.; (a) Gensterbring, G., Frieder, J. Y., Karting, F. M., Cutcher, R., Taleb-Ibrahimi, A., Johnson, R. L.; Le Lay, R.; Aristov, V.; Gunther, R.; Taleb-Ibrahimi, A.; Indlekofer, G.; Petroff, Y. *Phys. Rev. B* **1993**, *48*, 14756–14759. (b) Jiang, L. Q.; Koel, B. E. Phys. Rev. Lett. 1994, 72, 140-143.
- (52) Suzuki, S.; Bower, C.; Kiyokura, T.; Nath, K. G.; Watanabe, Y.; Zhou, O. J. Electron Spectrosc. Relat. Phenom. 2001, 114-116, 225-228.
- Gleeson, M. A.; Kropholler, M.; Kleyn, A. W. Appl. Phys. Lett. 2000, 77, (53)1096 - 1098.

Figure 5. (Top) First-stage HPLC chromatogram of the crude cold-zonecondensed C₆₀/CF₃I reaction products from the Karlsruhe synthesis at 460 °C. The inset shows the second-stage chromatogram of first-stage toluene fraction 2. (Bottom) Third-stage HPLC purification of first-stage toluene fraction 3. The inset shows the negative-ion S8-MALDI mass spectrum of the 13 mg sample of $C_{60}(CF_3)_{10}$ -3 that was isolated by taking a cut of the third-stage purification from 15.2 to 16.8 min.

Figure 5, for NMR analysis, and for growing single crystals for X-ray crystallography. This represents a 5 mol % yield based on converted C_{60} . Although this may seem like a modest yield, only five other highly purified, single isomer C₆₀ derivatives with more than six independent substituents have higher isolated yields, namely, C_{3v}-C₆₀H₁₈,⁵⁴ C_{3v}-C₆₀F₁₈,⁵⁵ C₃-C₆₀F₃₆,⁵⁶ T-C₆₀F₃₆,⁵⁶ $C_{2\nu}$ -C₆₀Br₈,³ and T_h -C₆₀Br₂₄.⁵

Toluene fractions 2 and 3 represent 62% of the mixture of products of the 460 °C Karlsruhe synthesis by integration of the HPLC peaks (Figure 5, top). Since fullerene derivatives with fewer substituents tend to be more highly colored, this may be an underestimate. If an intentionally overestimated 33% of the combined integrals for toluene fractions 2 and 3 are due to oxide impurities and/or other isomers of C₆₀(CF₃)₁₀, then the 460 °C Karlsruhe reaction conditions produced 40+ mol % of three isomers of the single composition C₆₀(CF₃)₁₀. It seems reasonable to expect that by optimizing the conditions to target a particular composition, 10 or more milligrams of a variety of purified, single-isomer $C_{60}(CF_3)_n$ derivatives will be isolated in the near future. This may also be true for other fullerene- $(CF_3)_n$ derivatives that are stable at the temperatures required for this selective synthesis strategy.

(d) Synthesis of $C_{70}(CF_3)_{10}$ -1. The most selective trifluoromethylation reaction found in this study was a 1 h reaction between C₇₀ and gaseous CF₃I at 470 °C using the Karlsruhe reaction conditions. The reaction products that condensed in the cold zone consisted of a small amount of $C_{70}(CF_3)_8$, a single isomer of C₇₀(CF₃)₁₀ (C₇₀(CF₃)₁₀-1; >40 mol %), and a mixture of C₇₀(CF₃)₁₂ and C₇₀(CF₃)₁₄ (we have not yet determined the

⁽⁵⁴⁾ Darwish, A. D.; Avent, A. G.; Taylor, R.; Walton, D. R. M. J. Chem. Soc., Perkin Trans. 2 1996, 2051-2054.

⁽⁵⁵⁾ Goldt, I. V.; Boltalina, O. V.; Kemnitz, E.; Troyanov, S. I. Solid State Sci. 2002, 4, 1395-1401. (56)

⁽a) Boltalina, O. V.; Street, J. M.; Taylor, R. J. Chem. Soc., Perkin Trans. 2 **1998**, 649–654. (b) Lukonin, A. Y.; Markov, V. Y.; Boltalina, O. V. Vestnik Moscov. Univ. Ser. 2: Khim. **2001**, 42, 3–16.

Figure 6. HPLC chromatograms and negative-ion S_8 -MALDI mass spectra of the crude cold-zone-condensed C_{70}/CF_3I reaction products and the 12 mg purified sample of $C_{70}(CF_3)_{10}$ -1 that was isolated by taking a cut of the single HPLC purification step from 16.7 to 18.5 min.

number of isomers of $C_{70}(CF_3)_8$, $C_{70}(CF_3)_{12}$, and $C_{70}(CF_3)_{14}$ present). An HPLC trace of the reaction mixture and an HPLC trace and MALDI mass spectra of the crude product and purified $C_{70}(CF_3)_{10}$ -1 are shown in Figure 6. Twelve milligrams of 95+ mol % pure $C_{70}(CF_3)_{10}$ -1 was isolated, which represents a 27% yield based on converted C_{70} (as with the isomers of $C_{60}(CF_3)_{10}$ isolated in this study, the purity of $C_{70}(CF_3)_{10}$ -1 was established by ¹⁹F NMR and mass spectroscopy analyses). Significantly, the purification of this compound was accomplished with a onestage HPLC procedure.

Structure of 1,3,7,10,14,17,23,28,31,40-C₆₀(CF₃)₁₀ (C₆₀-(CF₃)₁₀-3). (a) General Comments. The asymmetric molecule, shown in Figure 2, crystallized in P1 with a pair of enantiomers in the unit cell. There are no molecules of benzene (the solvent of crystallization) in the lattice. The decakis(trifluoromethyl)-[60]fullerene molecule consists of an intact C₆₀ cage with 10 CF₃ groups attached to carbon atoms C1, C3, C7, C10, C14, C17, C23, C28, C31, and C40 (this numbering scheme conforms to IUPAC and Chemical Abstracts Service recommendations;^{29,57} these CF₃ groups will be referred to as CF₃-1, CF₃-3, CF₃-7, etc.). Given the tendency of many fullerenes and their derivatives to exhibit disorder in the solid state, as well as the general tendency of trifluoromethyl groups to exhibit disorder and/or extreme thermal motion about their F₃C-C bonds, the structure is remarkably well behaved and exhibits no apparent disorder of any kind. This fact, combined with the high quality of both the crystals and the data set recorded, makes this structure one of the most precise fullerene structures reported to date from the standpoint of individual interatomic distances and angles. The estimated standard deviation (esd) for each of the C-F, C···F, and F···F interatomic distances, and for nearly all of the cage C–C bond distances, is ± 0.003 Å. The Schlegel diagrams in Figure 7 show the complete numbering scheme, all of the cage C-C distances to the nearest 0.01 Å, and the placement of C=C double bonds (1.36-1.40 Å). Selected interatomic distances and angles are listed in Table 2. The distortions of the fullerene cage from the pseudo-spherical shape of C₆₀ are described in detail in the Supporting Information.

Figure 7. Schlegel diagrams for $C_{60}(CF_3)_{10}$ -3 (the black circles represent fullerene carbon atoms to which the CF₃ groups are attached). For simplicity, fullerene C–C bond distances are shown in picometers (pm) and have been rounded off to the nearest pm (0.01 Å). Three times the estimated standard deviation (3 σ) for C53–C54, C49–C59, C43–C57, C41–C55, C56–C60, C58–C59, and C57–C58 is 0.012 Å, and 3 σ for all other C–C distances is 0.009 Å. The bottom Schlegel diagram shows the placement of double bonds.

Table 2. Selected Interatomic Distances (Å) and Angles (deg) for $C_{60}(CF_3)_{10}\text{-}3^a$

C1-C61	1.565(3)	C3-C62	1.552(3)
C14-C65	1.542(3)	C10-C64 C17-C66	1.534(5) 1.533(3)
C28-C68	1.528(3)	C31-C69	1.541(3)
C23-C67	1.539(3)	C40-C70	1.535(3)
F611F621	2.857(3)	F612F621	2.731(3)
F621F612	2.961(3)	F622F651	2.581(3)
F623····F661	2.653(3)	F611F641	2.992(3)
F612•••F633	2.961(3)	F613·••F641	2.785(3)
F613····F642	2.973(3)	F613·••F633	2.877(3)
F652···F691	2.568(3)	F643…F681	2.541(3)
F632···F673	2.574(3)	F692F683	2.560(3)
F671···F703	2.640(3)	C61…C62	3.608(3)
C61…C63	4.142(3)	C61…C64	3.736(3)
C62…C65	3.809(3)	C62…C66	4.343(3)
C64…C68	4.331(3)	C65…C69	4.354(3)
C67…C70	4.397(3)	C68····C69	4.346(3)
C-F	1.312(3)-1.342(3)	F-C-F	106.3(2)-108.1(2)
C-C-F	109.6(2)-113.1(2)	C-C-C _{CF3}	110.3(2)-116.3(2)

^a See Figure 7 for individual cage C-C distances.

Of the more than 300 structures of C₆₀, its molecular complexes, and its derivatives reported by the end of 2003,⁵⁸ only a few exhibit no disorder *and* have this level of precision for cage C–C bond distances. These include the xylene solvate of C₆₀F₁₈ ($\pm 0.002-0.003$ Å),⁷ C₆₀·Pt(OEP)·2C₆H₆ ($\pm 0.002-0.003$ Å),⁵⁹ a C₆₀-diphenylaminofluorene dyad ($\pm 0.003-0.004$

⁽⁵⁷⁾ Goodson, A. L.; Gladys, C. L.; Worst, D. E. J. Chem. Inf. Comput. Sci. 1995, 35, 969–968.

⁽⁵⁸⁾ Neretin, I. S.; Slovokhotov, Y. L. Russ. Chem. Rev. 2004, 73, 455-486.

Å),⁶⁰ and $C_{60}Br_6 \cdot 0.5C_6H_5Cl \cdot 0.5Br_2$ (±0.004 Å; the C_6H_5Cl molecule, but not the bromofullerene, is disordered about an inversion center).⁴ Much more typical for ordered C₆₀ derivatives are the cage C-C esd's found in structures such as $(C_{60})_2(6,13$ diphenylpentacene) 4.5CS₂ ($\pm 0.005 - 0.007$ Å; some of the CS₂ molecules are disordered),⁶¹ C₆₀F₁₅(CBr(CO₂Et)₂)₃·C₆H₅Me $(\pm 0.007 \text{ Å})$,¹⁵ C₆₀(CH₂C₆H₅)₄ $(\pm 0.007 - 0.008 \text{ Å})$,¹⁴ C₆₀- $(\text{fluorenyl})_4$ (±0.008 Å),¹³ Pd((η^5 -C₆₀Me₅)(η^3 -C₃H₅)·CS₂ (± 0.01) ,⁶² C₆₀•Co(OEP)•CHCl₃ $(\pm 0.012 \text{ Å})$,⁶³ C₆₀Br₂₄•2Br₂ $(\pm 0.012 - 0.014 \text{ Å})$,⁴ and Tl(C₆₀Ph₅)·2.5THF ($\pm 0.02 \text{ Å}$).¹²

(b) Lattice Packing. The distorted cubic closest packing of the molecules in the lattice and an intermolecular interaction involving only carbon atoms are shown in Figures S-4 through S-6 in the Supporting Information. The distances between a C_{60} centroid and the centroids of its 12 nearest neighbor molecules vary from 10.17 to 14.17 Å (all but one of these distances fall in the narrower range of 10.17-12.57 Å). There are 33 intermolecular F···F contacts of ≤ 3.15 Å to a given molecule of $C_{60}(CF_3)_{10}$ (all but seven are ≤ 3.00 Å; see Figure S-7). Figure S-8 shows the only intermolecular $\pi - \pi$ interaction for each molecule, involving inversion-center-related hexagons (hex···hex = 3.59 Å; cf. the 3.35 Å interplanar separation in graphite). The centroid-centroid distance between these two molecules is 10.17 Å, the shortest of all 12 nearest-neighbor centroid-centroid distances, which can be compared with the 9.94 Å distance in solvent-free C_{60} at 110 K⁶⁴ and the 9.81 Å distance in $(C_{60})_2(6,13$ -diphenylpentacene) at 90 K, in which the two fullerenes are forced into an orientation so that carbon atoms of two nearly parallel eclipsed pentagons make C···C contacts of 3.07-3.49 Å.61

(c) The CF₃ Groups. Bond distances and angles within the CF₃ groups are normal. The C-F distances range from 1.312-(3) to 1.342(3) Å, but 24 out of the 30 are between 1.325(3) and 1.336(3) Å. The F-C-F angles vary from 106.3(2) to $108.1(2)^{\circ}$. The sp³-sp³ C-C distances between the CF₃ carbon atoms and the cage vary from 1.528(3) to 1.565(3) Å (the two longest, involving the most crowded CF_3 groups, are 1.565(3) Å for C1–C61 and 1.552(3) Å for C3–C62; the others are 1.542(3) Å or shorter).

The 10 CF₃ groups are arranged on a ribbon of nine edgesharing hexagons, so that the two CF₃ groups on each hexagon are either *meta* (*m*) or *para* (*p*) to one another (see Figure 2). The CF₃ groups CF₃-17 and CF₃-40 are the termini of the chain of 10 CF₃ groups. Starting with CF₃-17, the arrangement on the ribbon of hexagons is *p-m-p-p-p-m-p-m-p*. The ribbon includes a *m-p-p-p-m* closed loop of five hexagons that bear the CF₃ groups on C1, C10, C28, C31, C14, and C3. The CF₃ groups are essentially (although not rigorously) confined to one hemisphere of C_{60} . With pentagons as the poles, the equator of C_{60} is defined by a circle that bisects 10 6,6-junctions so that

Figure 8. Schlegel diagrams for C60Br6, C60Br8, and C70Br10. Only the double bonds within pentagons are shown in the upper two diagrams.

the 20 carbon atoms of these junctions form a zigzag belt around the fullerene. Four CF₃ groups are bonded to four of these 20 atoms (C23, C28, C31, and C40). The other six CF₃ groups are bonded to carbon atoms in one of the hemispheres (C1, C3, C7, C10, C14, and C17). This results in the other hemisphere being virtually undistorted from a hemisphere of unsubstituted C₆₀ (see Figure S-9 for more details about the undistorted hemisphere).

The *m-p-p-p-m* closed loop of hexagons results in CF₃-1 and CF₃-3 being attached to the same pentagon. As far as we are aware, this is the first reported structure of any fullerene derivative with two or more independent substituents larger than bromine atoms (see below) on a given pentagon. There are, however, four bromofullerene structures with pairs of bromine atoms on pentagons, C₆₀Br₈ (two pairs),^{3,4} C₆₀Br₂₄ (all pairs),^{4,5} C₇₀Br₁₀ (one pair),⁶⁵ and C₇₈Br₁₈ (disordered solid solution of two different $C_{2\nu}$ isomers, one with two pairs and one with four pairs),66 the first three of which are shown as Schlegel diagrams in Figure 8. In the case of $C_{70}Br_{10}$, the pair of bromine atoms on the same pentagon are on adjacent carbon atoms in that pentagon.⁶⁵ The compound C₆₀Br₆,^{3,4} also shown in Figure 8, has a pair of bromine atoms on two contiguous carbon atoms (a hex-hex junction) but does not have two bromine atoms on the same pentagon.

The steric demands of CF₃ groups may, in general, preclude stable structures with two or more CF₃ groups on contiguous carbon atoms. There is little doubt that a CF₃ group is sterically more demanding than a bromine atom, and bromine atoms on contiguous C60 cage carbon atoms have only been observed for C₆₀Br₆ and then only for one pair of the six bromine atoms. The van der Waals radii of bromine and iodine atoms are 1.85 and 1.98 Å;⁶⁷ the effective radii of Br, I, and CF₃ determined by Sternhell et al. from rotational barriers in 6-aryl-1,1,5trimethylindans are 1.84 ± 0.04 , 1.97 ± 0.06 , and 2.2 ± 0.1 Å, respectively.68 Charton's maximum and minimum effective radii for the CF₃ group are 2.74 and 2.11 Å, respectively;⁶⁹ the molar volumes at 25 °C of 1,4-C₆H₄Br₂, 1,4-C₆H₄(CF₃)Br, and 1,4-

(69) Charton, M. J. Am. Chem. Soc. 1969, 91, 615-618.

⁽⁵⁹⁾ Olmstead, M. M.; de Bettencourt-Dias, A.; Lee, H. M.; Pham, D.; Balch, A. L. Dalton Trans. 2003. 3227-3232.

Chiang, L. Y.; Padmawar, P. A.; Canteenwala, T.; Tan, L.-S.; He, G. S.; Kannan, R.; Vaia, R.; Lin, T.-C.; Zheng, Q.; Prasad, P. N. Chem. Commun. (60)

<sup>2002, 1854–1855.
(61)</sup> Miller, G. P.; Briggs, J.; Mack, J.; Lord, P. A.; Olmstead, M. M.; Balch, A. L. Org. Lett. 2003, 5, 4199–4202.
(62) Kuris L. 2013, 199–4202.

 ⁽⁶²⁾ Kuninobu, Y.; Matsuo, Y.; Toganoh, M.; Sawamura, M.; Nakamura, E. Organometallics 2004, 23, 3259–3266. (63)

Olmstead, M. M.; Costa, D. A.; Maitra, K.; Noll, B. C.; Phillips, S. L.; Van Calcar, P. M.; Balch, A. L. J. Am. Chem. Soc. 1999, 121, 7090-7097

⁽⁶⁴⁾ Burgi, H.-B.; Blanc, E.; Schwarzenbach, D.; Liu, S.; Lu, Y.; Kappes, M. M.; Ibers, J. A. Angew. Chem., Int. Ed. Engl. **1992**, 31, 640–643

⁽⁶⁵⁾ Troyanov, S. I.; Popov, A. A.; Denisenko, N. I.; Boltalina, O. V.; Sidorov, L. N.; Kemnitz, E. Angew. Chem., Int. Ed. 2003, 42, 2395-239

⁽⁶⁶⁾ Troyanov, S. I.; Kemnitz, E. *Eur. J. Org. Chem.* **2003**, 3916–3919.
(67) Bondi, A. J. Phys. Chem. **1964**, 68, 441–451.
(68) Bott, G.; Field, L. D.; Sternhell, S. J. Am. Chem. Soc. **1980**, 102, 5618–

⁵⁶²⁶

 $C_6H_4(CF_3)_2$ are 128, 140, and 155 mL mol⁻¹,⁷⁰ and the molar volumes at 25 °C of C₆H₅Br, C₆H₅I, and C₆H₅CF₃ are 105, 112, and 123 mL mol⁻¹, respectively.⁷⁰

The steric bulk of a CF₃ group is not a sphere centered at the CF₃ carbon atom but a 3-fold-indented cylinder with a height equal to twice the van der Waals radius of a fluorine atom (i.e., 2×1.47 Å)⁶⁷ centered at the centroid of the three fluorine atoms (F₃) and with a maximum diameter equal to ca. 2.71 Å (1.47 + 1.24 Å, the nominal centroid ••• F distance). For the CF₃ groups in $C_{60}(CF_3)_{10}$ -3, each F_3 centroid lies essentially along the C_{cage} -CF₃ vector, 0.48–0.49 Å away from the CF₃ carbon atom (the $C_{cage} - C(F_3)$...centroid angles are all between 170.0(2) and 179.4(2)°). The C_{cage}····centroid distances are 2.01–2.06 Å, which coincidentally are about the same as the C-Br distances of 1.990(3)–1.999(3) Å in $C_{60}Br_6.^{3,4}$ The Br…Br distance between the two bromine atoms on contiguous carbon atoms in $C_{60}Br_6$ is 3.23 Å, which is fully 1 Å shorter than twice the Charton minimum radius of 2.1 Å for CF₃. (For comparison, the distances between meta and para pairs of bromine atoms in $C_{60}Br_6$ are 4.02–4.05 and 4.40–4.98 Å, respectively, and the distances between meta and para pairs of F3 centroids in $C_{60}(CF_3)_{10}$ -3 are 4.05-4.36 and 4.46-4.76 Å, respectively.) Although it is also true that the *ortho* bromine atoms in $C_{60}Br_{6}$ are closer than twice the bromine van der Waals radius, the difference is only ca. 0.5 Å and bromine atoms are more polarizable than fluorine atoms. Therefore, we conclude that fullerene structures with CF3 groups on adjacent cage carbon atoms will be the exception, not the rule, 2^{23-25} at least on those fullerene surfaces that have curvatures similar to C₆₀. One exception that might be anticipated is 1,6,9,12,15,18-C₆₀(CF₃)₆ (i.e., the skew pentagonal pyramidal structure exhibited by C_{60} -Br₆). Previously published DFT calculations predicted that this isomer is only 14.4 kJ mol⁻¹ less stable than the most stable isomer with no remote pairs of CF₃ groups, the asymmetric molecule p-p-p-m-p- $C_{60}(CF_3)_6$.²²

Note that the bromination reactions that produced $C_{60}Br_6$, C_{60} -Br₈, C₆₀Br₂₄, C₇₀Br₁₀, and C₇₈Br₁₈ were carried out at room temperature.^{3,5,34,66} It is unlikely that facile rearrangement of the C-Br bonds can occur rapidly at this temperature, so these structures probably represent kinetically favored structures if not thermodynamically stable ones. Therefore, regardless of the specific mechanism(s) for bromination of C₆₀, C₇₀, and C₇₈, it seems much more likely that it involves, in general, a series of para additions than ortho additions, and the same is almost certainly true for the addition of larger CF3 radicals to C60 and higher fullerenes at high temperature. The fact remains that, with the two exceptions just noted, (fullerene) X_n compounds with bulky X substituents that have been unambiguously structurally characterized by single-crystal X-ray diffraction have bromine atoms,^{3,5,65,66} phenyl groups,¹² fluorenyl groups,¹³ or CF₃ groups (this work) that are *para* or *meta* to one another on a ribbon or a loop¹² of edge-sharing hexagons.

Significantly, the structure of C₆₀(CF₃)₁₀-3 contains substructures along the ribbon that are identical to the proposed p-m-pand p-p-p structures of C_1 -C₆₀(CF₃)₄ and the proposed p-m-p*m-p* and *p-p-p-m-p* structures of C_1 - C_{60} (CF₃)₆ from our previous work (three of these four structures are shown on the left side of Figure 1; the *p*-*p*-*p* structure proposed for C_s - $C_{60}(CF_3)_4$ has CF₃ groups on C10, C14, C28, and C31).^{21,22} In fact, there are

three p-m-p-(CF₃)₄ fragments that are part of the $C_{60}(CF_3)_{10}$ structure, not just the one shown in Figure 1. Furthermore, p-p $p-C_{60}(CF_3)_4$ and $p-m-p-C_{60}(CF_3)_4$ are substructures of the two proposed C_1 isomers of $C_{60}(CF_3)_6$. These observations, added to the fact that the reaction/purification temperatures used to prepare $C_{60}(CF_3)_{10}$ -3 in this work and the two isomers each of $C_{60}(CF_3)_4$ and $C_{60}(CF_3)_6$ in our previous work^{21,22} were ≥ 460 °C (high enough, presumably, to cause isomerization to stable arrangements), suggest that many, if not most, fullerene(CF_3)_n compounds prepared at temperatures \geq 460 °C will be found to contain variations of linked p-p-p-C₁₈(CF₃)₄ and p-m-p- $C_{18}(CF_3)_4$ fragments, and that structures with *p*-*m*-*m*- $C_{18}(CF_3)_4$ or *m*-*m*- $C_{18}(CF_3)_4$ fragments, or with terminal *m*- $C_6(CF_3)_2$ fragments, will be much less common, if they are observed at all. (In the foregoing description, meta and para refer only to edge-sharing adjacent hexagons that share a single CF₃ group. Therefore, the adjacent hexagons that contain CF_{3} -1, -3, -10, and -14 are not, by this definition, a m-m fragment; a true m-m fragment would comprise three CF₃ groups, not four. Furthermore, the same four CF₃ groups do not constitute a m-m-m fragment, also by definition, because the central polygon is a pentagon, not a hexagon.) Table 3 contains the results of our previous DFT calculations and those of Clare and Kepert⁷¹ on the relative heats of formation of three stable C₆₀X₄ derivatives $(X = F, Cl, CH_3, Br, CF_3, and t-C_4H_9)$. Except for X = F, the first three structures shown represent the three most stable structures. As the substituents become larger, the p-p-p and *p*-*m*-*p* isomers are stabilized relative to the structure with an ortho pair of substituents (which happens to be one of the two most stable structures found for $C_{60}F_4$). Note also that the *p-p-m* isomer of $C_{60}(CF_3)_4$ is particularly unstable.

(d) Intramolecular F···F Contacts. Figure 9 shows the 15 intramolecular F···F contacts shorter than 3.00 Å in $C_{60}(CF_3)_{10}$ -3, which range from 2.541(3) to 2.992(3) Å (see Table 2; the next shortest intramolecular F···F contacts are 3.34 and 3.56 Å). Interestingly, the three $F \cdot \cdot \cdot F$ contacts for CF_3 -1 and CF_3 -3, which are closer than any other pair of CF₃ groups (C61···C62 = 3.608(3) Å), are relatively long at 2.731(3)-2.961(3) Å, and the shortest F···F contact in $C_{60}(CF_3)_{10}$ -3 is for a pair of para CF_3 groups (F643···F681 = 2.541(3) Å; C64···C68 = 4.331-(3) Å). For comparison, consider the structures of the trifluoromethylated alcohols shown in Figure 10 (these two structures will also be discussed in the NMR section below).72,73 The F···F contacts shown in Figure 10 range from 2.51 to 2.58 Å, and the relevant F₃C····CF₃ distances range from 3.37 to 3.71 Å.

(e) The Fullerene Carbon-Carbon Bonds. The 90 C-C bond distances in the C₆₀ core of C₆₀(CF₃)₁₀-3 are shown in Figure 7 and graphically in Figure S-10 (Supporting Information). The small esd's for these distances allow five distinct regions to be recognized in the hemisphere containing the 10 CF₃ groups instead of the two distinct regions in the relatively undisturbed corannulene portion of the molecule, short 6,6junctions and long 5,6-junctions (as in one of the most precise structures of the parent C₆₀ molecule⁵⁹).

 ^{(71) (}a) Clare, B. W.; Kepert, D. L. J. Mol. Struct. (THEOCHEM) 2003, 621, 211–231.
 (b) Clare, B. W.; Kepert, D. L. J. Mol. Struct. (THEOCHEM) 1995, 340, 125-142.

⁽⁷²⁾ Barbarich, T. J.; Rithner, C. D.; Miller, S. M.; Anderson, O. P.; Strauss, S. H. J. Am. Chem. Soc. **1999**, *121*, 4280–4281.
(73) Barbarich, T. J.; Nolan, B. G.; Tsujioka, S.; Miller, S. M.; Anderson, O. P.; Strauss, S. H. J. Fluorine Chem. **2001**, *112*, 335–342.

⁽⁷⁰⁾ Densities at 25 °C were taken from www.sigmaaldrich.com.

Х

F Cl Br

CH₃

CF₃

t-C₄H₉

n

Table 3. DFT Predicted Relative Enthalpies of Formation (kJ mol⁻¹) for Selected C₆₀X₄ Derivatives^a

1	()	00 1				
isomer						
1,6,15,18 ^{b,c}	1,6,11,18 ^{c,d}	1,6,9,18 ^d	1,6,15,18 ^e			
р-р-р	р-т-р	<i>p-p-o</i>	р-р-т			
6.9	16.5	0	_			
0	6.9	9.7	—			

11.0

8.5

36.3

177

^{*a*} Data are from refs 71a,b, except for CF₃ values, which are from refs 21 and 22. ^{*b*} Observed in the X-ray structure of C₆₀(9-fluorenyl)₄ (ref 13). ^{*c*} One of two patterns observed in the X-ray structure of C₆₀(CF₃)₁₀-3 (this work). ^{*d*} One of two patterns observed in the X-ray structures of two electrochemically generated isomers of C₆₀(CH₂Ph)₄ (ref 14; an older numbering scheme was used in this reference so that the IUPAC 1,6,11,18-isomer of C₆₀(CH₂Ph)₄ was originally reported as 1,4,10,24-C₆₀(CH₂Ph)₄, and the IUPAC 1,6,9,18-isomer was originally reported as 1,2,4,15-C₆₀(CH₂Ph)₄). ^{*e*} No X-ray structure of any C₆₀X_n molecule has been observed with a terminal *m*-C₆X₂ pair of substituents.

6.7

4.4

8.2

22.6

Figure 9. The 15 intramolecular F···F contacts from 2.541 to 2.992 Å in $C_{60}(CF_{3})_{10}$ -3. Only the fluorine atoms (gray) and the CF_3 carbon atoms (white) are shown as spheres (arbitrary size) for clarity. The individual F···F distances are listed in Table 2.

Fluorine-19 NMR Spectra. The 1D and 2D-COSY spectra for $C_{60}(CF_3)_{10}$ -3 are shown in Figures 11 and 12, and the data are listed in Table 4 (also listed are data for $C_{60}(CF_3)_{10}$ -1, C_{60} - $(CF_3)_{10}$ -2, C_1 - $C_{60}(CF_3)_{4}$,²¹ C_1 - $C_{60}(CF_3)_{6}$,²¹ and $C_{70}(CF_3)_{10}$ -1). The 2D-COSY spectrum of $C_{60}(CF_3)_{10}$ -3, along with the X-ray structure, led to the unambiguous assignment of the 10 CF₃ multiplets. The chemical shifts for the two terminal CF₃ groups are more shielded than those with two nearest-neighbor CF₃ groups. Furthermore, CF₃-1 and CF₃-3 are the most deshielded (multiplets **a** and **b**, which are accidentally isochronous). This is opposite to what was observed for the three types of fluorine atoms in $C_{60}F_{18}$, which have one, two, or three fluorine atom nearest neighbors on contiguous cage carbon atoms.⁷⁴

>50

Figure 10. Intramolecular F···F contacts in two trifluoromethylated alcohols from ref 72 (top: F5···F12, 2.58 Å; F2···F12, 2.51 Å; C3···C11, 3.66 Å; C2···C11, 3.40 Å; R = i-Pr) and ref 73 (bottom: F5···F11, 2.58 Å; F2···F12, 2.58 Å; C3···C11, 3.71 Å; C2···C11, 3.38 Å). The unlabeled gray spheres are fluorine atoms, and the unlabeled white spheres are carbon atoms.

The J_{FF} values for C₆₀(CF₃)₁₀-3 vary from 8.4 to 16 Hz and give rise to quartets for the two terminal CF₃ groups and to multiplets for the other eight CF₃ groups (the uncertainties in the J_{FF} values for C₆₀(CF₃)₁₀-3 and the other C_{60/70}(CF₃)_n compounds discussed here are ±0.2 Hz for terminal CF₃ groups and ±1 Hz for other CF₃ groups). Some of these multiplets resemble septets, indicating that the two J_{FF} values for that CF₃ group and its two nearest-neighbor CF₃ groups are equal or nearly equal (e.g., multiplets **c** and **f**). When the two J_{FF} values are unequal, the multiplets take on their true nature as quartets of quartets (e.g., multiplets **g** and **h**). The J_{FF} coupling between CF₃-1 and CF₃-3 cannot be observed because their multiplets are accidentally isochronous. No splittings other than those

ARTICLES

⁽⁷⁴⁾ Boltalina, O. V.; Markov, V. Y.; Taylor, R.; Waugh, M. P. Chem. Commun. 1996, 2549–2550.

Figure 11. The 376 MHz ¹⁹F NMR spectrum of C₆₀(CF₃)₁₀-3 (benzene d_6 , 25 °C, C₆F₆ internal standard (δ -164.9)).

Figure 12. The ${}^{19}F-{}^{19}F$ COSY NMR spectrum of $C_{60}(CF_3)_{10}$ -3 (benzene d_6 , 25 °C, C₆F₆ internal standard (δ -164.9)).

involving J_{FF} coupling to nearest-neighbor CF₃ groups were observed for any of the compounds listed in Table 4.

As in our previous work on C_1 - $C_{60}(CF_3)_4$ and C_1 - $C_{60}(CF_3)_6$,²¹ we propose that through-space F-F coupling is the largest contribution to the observed J_{FF} values in $C_{60}(CF_3)_{10}$ -3. Some might argue that the term "through-space coupling" is a misnomer since true through-space coupling involving zero orbital overlap (e.g., dipolar coupling) is not observed in liquid NMR spectra. Nevertheless, NMR spectroscopists have used the term for more than 40 years to describe Fermi contact coupling (FCC) by direct overlap of fluorine atom orbitals (primarily lone-pair orbitals) as opposed to FCC through the σ framework of a molecule.75 It is now widely accepted that significant J coupling between proximate fluorine nuclei (i.e.,

 \leq 3.2 Å apart) that are separated by four or more bonds (i.e., $^{>3}J_{\text{FF}}$) is *predominantly* mediated through space (as just defined) and not through the network of covalent bonds that separate the fluorine atoms76-82 (or for metal complexes with C-F bonds, through the network of bonds that includes metal-ligand bonds⁸³). Perhaps the most compelling case is the 17 ± 2 Hz $^{398}J_{\rm FF}$ coupling observed⁸⁴ for the fluorine atoms on 6-fluorotryptophan residues (Trp5 and Trp133) in a dihydrofolate reductase-NADPH-MTX protein complex, which Oldfield and co-workers later showed was mediated entirely by through-space coupling (F····F = 2.98 Å).⁷⁸

The fluorine atoms on nearest-neighbor CF3 groups in C₆₀-(CF₃)₁₀-3 are separated by either six (meta) or seven bonds (*para*). In the ${}^{6}J_{\rm FF}$ cases, one of the intervening carbon atoms has sp^2 hybridization, while in the $^7J_{FF}$ cases, there are two equivalent pathways containing a different C=C double bond. An estimate can be made of the magnitude, but not the sign, of the through-bond contribution to ${}^{6}J_{\text{FF}}$ for a pair of CF₃ groups by examining the ¹⁹F NMR data for the fluoro alcohols shown in Figure 10.72,73 In both compounds, hydrogen bonding between the OH group and one of the ortho CF₃ groups resulted in slow rotation about the (HO)C-C(arene) bond. The magnitude of the ${}^{6}J_{\text{FF}}$ coupling between the hydrogen-bonded CF₃ group and the geminal CF₃ groups (two intervening sp² carbon atoms), which can only be through bonds, is ≤ 2 Hz, whereas ${}^{6}J_{FF}$ for the other ortho CF₃ group and the geminal CF₃ groups is 15 Hz. Therefore, the through-space contribution to the latter ${}^{6}J_{\rm FF}$ value is probably between 13 or 17 Hz.

To estimate the likely intramolecular F···F contacts in solution so that we can compare the coupling-constant data with recent theoretical and experimental work on through-space $J_{\rm FF}$ coupling, we will assume that the solid-state conformations of the CF₃ groups other than CF₃-1 and CF₃-3 are maintained to a significant degree in solution. An obvious proviso is that each fluorine atom assumes each of the three positions for its CF₃ group one-third of the time. The conformations of CF₃-1, -3, -7, -17, -23, and -40 are shown in Figure 13 along with other fragments of the $C_{60}(CF_3)_{10}$ -3 structure relevant to this discussion. The three fluorine atoms on CF₃-7, CF₃-17, CF₃-23, and CF₃-40 are staggered with respect to the three cage carbon atoms attached to C7, C17, C23, and C40, respectively. The same is true for the four remaining CF₃ groups not shown in Figure 13. The conformations of the unique pair of CF₃ groups on the same pentagon are revealing; CF3-1 is almost perfectly eclipsed, and CF₃-3 exhibits a conformation between staggered and eclipsed. This is probably due to F···F steric interactions that require one

- (75) (a) Petrakis, L.; Sederholm, C. H. J. Chem. Phys. 1961, 35, 1243. (b) Brey, W. S.; Ramey, K. C. J. Chem. Phys. 1963, 39, 844. (c) Mallory, F. B.; Mallory, C. W.; Fedarko, M.-C. J. Am. Chem. Soc. 1974, 96, 3536–3542.
- (76) Tuttle, T.; Grafenstein, J.; Cremer, D. Chem. Phys. Lett. 2004, 394, 5-13. (a) Schwarz, R.; Seelig, J.; Kunnecke, B. Magn. Reson. Chem. 2004, 42, 512-517. (b) San Fabian, J.; Westra Hoekzema, A. J. A. J. Chem. Phys. 2004, 121, 6268-6276. (c) Bryce, D. L.; Wasylishen, R. E. J. Mol. Struct. 2002, 602, 463-472
- (78) Arnold, W. D.; Mao, J.; Sun, H.; Oldfield, E. J. Am. Chem. Soc. 2000, 122, 12164-12168
- (79) Peralta, J. E.; Contreras, R. H.; Snyder, J. P. Chem. Commun. 2000, 2025-2026
- (80) Mallory, F. B. et al. J. Am. Chem. Soc. 2000, 122, 4108-4116.
- Alkorta, I.; Elguero, J. E. Struct. Chem. 2004, 15, 117–120. Bartolome, C.; Espinet, P.; Martin-Alvarez, J. M.; Villafane, F. Eur. J. Inorg. Chem. 2004, 2326–2337. (82)(83)
- Albeniz, A. C.; Casado, A. L.; Espinet, P. Organometallics 1997, 16, 5416-5423
- (84) Kimber, B. J.; Feeney, J.; Roberts, G. C. K.; Birdsall, B.; Griffiths, D. V.; Burgen, A. S. V. Nature 1978, 271, 184-185.

Table 4. Fluorine-19 NMR Dataa

compound	multiplet/– δ /res. nos. of COSY correlations/ J_{FF} , Hz/location of CF ₃ on C ₆₀									
$\begin{array}{c} C_{60}(CF_3)_{10}\text{-}3\\ -\delta\\ COSY\\ J_{FF}\\ C_{60} \text{ location} \end{array}$	a	b	c	d	e	f	g	h	i	j
	58.3	58.3	65.4	66.8	66.8	67.2	68.4	68.6	69.7 ^b	70.8 ^b
	d,h	g.j	e,g	a,e	c,d	d , i	b,c	a,e	f	b
	(9) ^{c,d}	(8.4), (9) ^{c,d}	16	<i>e</i>	(16) ^d	12–13	9, 16	9, 16	12.8	8.4
	C1	C3	C31	C7	C28	C23	C14	C10	C40	C17
$\begin{array}{c} \mathrm{C}_{60}(\mathrm{CF}_3)_{10}\text{-}2\\ -\delta\\ \mathrm{COSY}\\ J_{\mathrm{FF}} \end{array}$	a	b	c	d	e	f	g	h	i	j
	64.0	64.9	65.5	66.8	67.0	67.0	67.2	67.9	68.7 ^b	70.0 ^b
	d,g	c,g	b,f	a,e	d,i	c,h	a,b	f,j	h	e
	12	12-13	13	12	12-13	12–13	12	14-15	14.2	12.6
$\begin{array}{c} C_{60}({\rm CF}_3)_{10}\text{-}1\\ -\delta\\ {\rm COSY}\\ J_{\rm FF} \end{array}$	a	b	c	d	e	f	g	h	i	j
	64.0	65.9	66.2	67.3	67.8	67.2 ^b	70.0	70.0 ^b	70.4 ^b	71.1 ^b
	c,d	c,h	a,b	a,e	d,g	j	e,i	b	g	f
	12-13	12-13	12	12	15-16	13.7 ^f	12–13	12.4	12.7	13.9 ^f
$C_{1}\text{-}C_{60}(\text{CF}_{3})_{4}^{g}$ $-\delta$ $COSY$ J_{FF}	a 67.1 b,d 12-13	b 67.3 a,c 14	c 69.7 ^b b 14.2	d 71.3 ^b a 12.2						
$C_{1}-C_{60}(CF_{3})_{6}^{g}$ $-\delta$ $COSY$ J_{FF}	a 66.0 c,f 11-12	b 67.2 c,d 15	c 67.4 a,b 13	d 68.2 d,e 14-15	e 69.2 ^b d 14.0	f 71.5 ^b a 11.4				
$\begin{array}{c} C_{70}({\rm CF_3})_{10}\text{-}1\\ -\delta\\ {\rm COSY}\\ J_{\rm FF} \end{array}$	a	b	c	d	e	f	g	h	i	j
	59.2	61.5	62.1	62.2	62.4	62.8	63.4	64.3	67.6 ^b	70.7 ^b
	c,g	e,f	a,h	e,i	b,d	b,g	a,f	c,j	d	h
	11, 16	13-14	14-15	15-16	13-14	13-14	11, 16	10, 14	15.9	10.3

^{*a*} All data are from this work, unless otherwise noted; benzene- d_6 solutions at 25 °C; C_6F_6 internal standard (δ –164.9). Coupling constants are known to ± 0.2 Hz for terminal CF₃ quartets. Resonances for other CF₃ groups are multiplets; J_{FF} values for the ones that are apparent (but not true) septets are ± 1 Hz. Data for impurity peaks are not included. ^{*b*} Terminal CF₃ group. ^{*c*} J_{FF} values in parentheses were not observed in these multiplets but were taken from the COSY-correlated multiplets. ^{*d*} The J_{FF} value for CF₃-1/CF₃-3 does not result in observable splittings because their multiplets are accidentally isochronous. ^{*e*} The dash denotes that the J_{FF} value could not be determined due to the complexity of the multiplet. ^{*f*} These values are the same to within experimental error. ^{*g*} Data from ref 21 (toluene- d_8).

of these most-crowded CF₃ groups to be eclipsed if the other is staggered or partially staggered, despite the fact that an eclipsed geometry results in three relatively short F···C_{cage} contacts of 2.6–2.7 Å (in contrast, the F···C_{cage} contacts for staggered CF₃-7 are ≥ 2.85 Å). The eclipsed geometry of CF₃-1 results in intramolecular F···F distances to CF₃-7 and CF₃-10 that are the longest in the molecule, 2.79–3.00 Å. In contrast, the shortest F···F distances that involve partially staggered CF₃-3 are 2.653 Å (F623···F661 to CF₃-17; see Figure 13) and 2.581 Å (to CF₃-14).

There are two observations that can be understood only if CF₃-1 and CF₃-3 exhibit the eclipsed conformation ca. 50% of the time. First, despite the different solid-state F···F distances to their nearest-neighbor CF_3 groups just noted, the J_{FF} values for CF₃-1/CF₃-10 and CF₃-3/CF₃-14 are both 9 Hz, suggesting equal time-averaged F···F distances in solution. Second, despite the same solid-state distances for F623···F661 and F671···F703 and the same trapezoidal geometry of their respective pairs of C-F bonds shown in Figure 13, the $J_{\rm FF}$ values for CF₃-3/CF₃-17 (8.4 Hz) and CF₃-23/CF₃-40 (12.8 Hz) are significantly different. This suggests that the time-averaged F···F distances for CF₃-3/CF₃-17 and CF₃-23/CF₃-40 are significantly different in solution even though they are the same in the solid state. Therefore, the average conformation of CF₃-3 in solution undoubtedly includes a significant contribution of the eclipsed conformation.

Consider the three structure fragments in Figure 13 that show pairs of CF₃ groups on a given hexagon. Each pair exhibits one relatively short F···F contact (2.57 Å for the *meta* pair and 2.64 or 2.65 Å for the *para* pairs). All other F···F distances between the pairs are \geq 3.60 Å, distances for which through-space J_{FF} values are calculated to be ca. 0 Hz.^{76,78,79} Since the three fluorine atoms of each CF₃ have the same δ value, pairs of fluorine atoms on neighboring CF₃ groups are in position to experience through-space coupling with one another only oneninth of the time. Therefore, the through-space component of the observed *time-averaged J*_{FF} values in Table 4 are 9 times smaller than the through-space contribution to *J*_{FF} for a specific pair of fluorine atoms on a given pair of neighboring CF₃ groups. If we make the simplifying assumption that the values in Table 4 are entirely due to through-space coupling, then the magnitude of the nonzero through-space components of the time-averaged *J*_{FF} values for CF₃ groups other than CF₃-1 and CF₃-3 varies from 81 ± 9 to 144 ± 9 Hz.

With the above assumptions regarding F····F distances in solution in mind, the observed range of individual through-space $J_{\rm FF}$ values of 81–144 Hz is consistent with recent theoretical and experimental results on the magnitude of through-space J_{FF} coupling. Several groups have calculated the F···F distance dependence of $J_{\rm FF}$ for the rectangular (HF)₂ system having parallel H–F bonds, equal F···F and H···H distances, and C_{2v} symmetry.^{76,78,79} In this orientation, the $J_{\rm FF}$ ranges reported by different groups were 18-32 Hz at 3.0 Å,76,78,79 60-80 Hz at 2.7 Å,76,79 85-120 Hz at 2.6 Å,76,79 and 116-170 Hz at 2.5 Å.^{76,79} In one study, the $J_{\rm FF}$ value at 2.6 Å changed from 120 to 320 Hz depending on the relative orientation of the two HF molecules.⁷⁶ Calculations involving two C-F bonds have given comparable magnitude coupling constants at comparable F···F distances,^{76,78,79,81,85} and experimental J_{FF} values of 37-99 Hz have been reported for F ... F distances that are between 2.5 and

Figure 13. Fragments of the structure of $C_{60}(CF_3)_{10}$ -3. In each of the three fragments at the top, the plane of the page represents the plane of the three cage carbon atoms attached to C3, C1, or C17 (from left to right). In the trapezoid drawings, the four atoms shown are coplanar to within 0.15 (top), 0.05 (middle), and 0.09 Å (bottom).

2.7 Å.^{80,86} A relevant system involving CF₃ groups is *cis*-Pd- $(2,4,6-C_6H_2(CF_3)_3)_2(L-L')$, in which pairs of ortho CF₃ groups on different tris(trifluoromethyl)mesityl ligands are proximate and exhibit time-averaged through-space J_{FF} couplings of 7.5-10 Hz depending on the nature of the unsymmetric chelating L-L' ligand.⁸² Considering that the F···F distances in the related compound with the symmetric chelate 2,2'-biquinoline are 2.707(7) and 2.750(7) Å,⁸² slightly longer than the 2.541(3)-2.653(3) Å distances in $C_{60}(CF_3)_{10}$ -3 that do not involve CF_3 -1 and CF₃-3, the fact that those coupling constants are slightly smaller than the 12–16 Hz J_{FF} values for C₆₀(CF₃)₁₀-3 is not unexpected. Interestingly, one of the C-F···F-C fragments in cis-Pd(2,4,6-C₆H₂(CF₃)₃)₂(2,2'-biquinoline) is a trapezoid very similar to those in Figure 13. As far as we are aware, no one has yet calculated $J_{\rm FF}$ values for a trapezoidal arrangement of two C-F bonds. It will be interesting to see what the predicted values of J_{FF} will be for this geometry at F···F distances between 2.55 and 2.75 Å.

The 1D ¹⁹F NMR spectra of $C_{60}(CF_3)_{10}$ -1 and $C_{60}(CF_3)_{10}$ -2 are compared with the spectrum of $C_{60}(CF_3)_{10}$ -3 in Figure 14 (δ and J_{FF} values are listed in Table 4; 2D NMR spectra are

Figure 14. Fluorine-19 NMR spectra of the three isomers of $C_{60}(CF_3)_{10}$ (376.5 MHz, benzene- d_6 , 25 °C, C_6F_6 internal standard (δ -164.9)). Multiplets a and b in the spectrum of $C_{60}(CF_3)_{10}$ -3 are accidentally isochronous.

available in Supporting Information). Both compounds clearly have C_1 symmetry. The similarity in all respects to the 1D and 2D spectra of $C_{60}(CF_3)_{10}$ -3 strongly suggests that these compounds too have pairs of CF₃ groups in *meta* and/or *para* positions on the fullerene hexagons. In the case of $C_{60}(CF_3)_{10}$ -2, the data are consistent with a ribbon of nine edge-sharing

⁽⁸⁵⁾ Peralta, J. E.; Barone, V.; Contreras, R. H.; Zaccari, D. G.; Snyder, J. P. J. Am. Chem. Soc. 2001, 123, 9162–9163.

 ^{(86) (}a) Ernst, L.; Ibrom, K.; Marat, K.; Mitchell, R. H.; Bodwell, G. J.; Bushnell, G. W. Chem. Ber. 1994, 127, 1119–1124. (b) Ernst, L.; Ibrom, K. Angew. Chem., Int. Ed. Engl. 1995, 34, 1881–1882.

Figure 15. 1D- and 2D-COSY ¹⁹F NMR spectra of C₇₀(CF₃)₁₀-1 (376.5 MHz, benzene- d_6 , 25 °C, C₆F₆ internal standard (δ -164.9)).

hexagons (there are two terminal CF₃ groups that give rise to quartets **i** and **j**). In the case of $C_{60}(CF_3)_{10}$ -1, the data are consistent with a ribbon of eight edge-sharing hexagons and an isolated *para*-(CF₃)₂ hexagon (there are four terminal CF₃ groups that give rise to quartets **f**, **h**, **i**, and **j**, and quartets **f** and **j** are correlated only with one another). In neither case is there evidence for a pair of CF₃ groups occupying the same pentagon, as in $C_{60}(CF_3)_{10}$ -3.

The 1D and 2D spectra for C₇₀(CF₃)₁₀-1 are shown in Figure 15, and the data are listed in Table 4. The data are entirely consistent with a ribbon of nine hexagons but without a C5- $(CF_3)_2$ pentagon (i.e., a ribbon probably similar to that for C_{60} - $(CF_3)_{10}$ -2). It is surprising that $C_{70}(CF_3)_{10}$ -1 is asymmetric. The compound $C_{70}Br_{10}$ is known to have C_s symmetry, with bromine atoms occupying the relatively flat equator of C₇₀ (see Figure 8).⁶⁵ That structure, predicted to be the most stable for this molecule,⁸⁷ has two bromine atoms on adjacent cage carbon atoms, so it is not surprising that C70(CF3)10-1 does not adopt this structure. What is surprising is that the second most stable structure predicted for $C_{70}Br_{10}$ has C_2 symmetry with a sterically unencumbered all-para ribbon on nine edge-sharing hexagons. The unambiguous asymmetry of $C_{70}(CF_3)_{10}$ -1 and the fact that it was prepared at 470 °C suggests that there may be C_1 isomers of some $C_{70}X_{10}$ compounds that are especially stable and that until now have not been considered by fullerene theorists. Note that C_s -C₇₀Br₁₀ was prepared at room temperature.⁶⁵ Therefore, it is possible that it represents a kinetic product and not the most stable isomer.

The NMR data for C_1 - $C_{60}(CF_3)_4$ and C_1 - $C_{60}(CF_3)_6$ are also listed in Table 4.²¹ The similarity of their δ and J_{FF} values to those of $C_{60}(CF_3)_{10}$ -3 is striking. Neither compound has a closedloop of edge-sharing hexagons. Nevertheless, both compounds have different J_{FF} values for the two terminal CF₃ group quartets (12.2 and 14.2 Hz for C_1 - $C_{60}(CF_3)_4$, 11.4 and 14.0 Hz for C_1 - $C_{60}(CF_3)_6$), as does $C_{60}(CF_3)_{10}$ -2. Furthermore, all of the single isomer fractions of $C_{60}(CF_3)_n$ and $C_{70}(CF_3)_n$ isolated by Taylor and co-workers have δ and $J_{\rm FF}$ values in chloroform-d solution in the same ranges (for $C_{60}(CF_3)_n$, $-58.0 \ge \delta \ge -69.9$, 11.3 $Hz \le J_{FF} \le 14.5 Hz$; for $C_{70}(CF_3)_n$, $-60.9 \ge \delta \ge -70.4$, 9.1 Hz $\leq J_{\rm FF} \leq 17.6 \ {\rm Hz}^{23-25}$) as structurally characterized C₆₀- $(CF_3)_{10}$ -3, the DFT-predicted structures of C_1 - $C_{60}(CF_3)_4$ and C_1 - $C_{60}(CF_3)_6$, and the other compounds in Table 4. In their most recent paper,²⁵ these authors stated that "in general [1,4 addition of CF3 groups] does not account for the large coupling constant variations", a conclusion that is disproven by the structure and NMR spectrum of C₆₀(CF₃)₁₀-3. There can now be little doubt that most $C_{60,70}(CF_3)_n$ compounds prepared to date have structures based on a ribbon of edge-sharing hexagons with *p-m-p* and/or *p-p-p* segments, some of which may also have isolated para- $C_6(CF_3)_2$ hexagons. The one exception may be an isomer of $C_{60}(CF_3)_6$ with the skew pentagonal pyramid structure of $C_{60}Br_6$ (see Figure 8).

Conclusions

A significant improvement in the selectivity of fullerene trifluoromethylation reactions was achieved by using a stream of CF₃I flowing through a hot tube containing either C₆₀ or C₇₀. The predominant products in the C₆₀ reaction, an estimated 40+ mol % of the cold-zone condensate, were three isomers of C₆₀-(CF₃)₁₀ that were purified by two- or three-stage HPLC. The selectivity of the C70 reaction was even higher. The predominant product was a single $C_{70}(CF_3)_{10}$ isomer representing ca. >40 mol % of the cold-zone condensate (27% overall yield based on converted C_{70}). One of the $C_{60}(CF_3)_{10}$ isomers was purified to 95+% purity, and its C_1 -symmetric structure was determined to be $1,3,7,10,14,17,23,28,31,40-C_{60}(CF_3)_{10}$ by X-ray crystallography. The CF₃ groups are either meta or para to one another on a *p-m-p-p-p-m-p-m-p* ribbon of edge-sharing $C_6(CF_3)_2$ hexagons. With this structure in hand, the ¹⁹F NMR data, especially the observed, variable ${}^{6,7}J_{FF}$ values of 8.4(2)-16(1)Hz, clearly demonstrate that through-space coupling via direct overlap of fluorine atom orbitals is the predominant contribution to J_{FF} values in these and probably most other fullerene(CF₃)_n compounds. Previous structural assignments of $C_{60,70}(CF_3)_n$ derivatives that were based on predominantly through-bond coupling²³⁻²⁵ should be reconsidered.

Acknowledgment. This work was supported by the U.S. NSF (CHE-9905482), the Volkswagen Foundation (I-77/855), the Russian Foundation for Basic Research (Project No. 05-03-33051-a), and an AvH Foundation Freidrich Bessel Award (to O.V.B.). We thank Prof. D. W. Grainger for the use of his HPLC equipment, and Prof. M. M. Kappes for his generous support.

Supporting Information Available: Complete ref 80 and additional figures and tables of X-ray parameters and results for $C_{60}(CF_3)_{10}$. This material is available free of charge via the Internet at http://pubs.acs.org.

JA050305J

⁽⁸⁷⁾ Clare, B. W.; Kepert, D. L. J. Mol. Struct. (THEOCHEM) 1999, 491, 249-264.